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Here Arm' s 1, otherwise Ax = AZ", which is impossible, since x # x'. With this
remark, formula (5) establishes our lemma.

4. The proof of the theorem stated in section 2 now follows immediately.
The set of all elements A' such that B-1A'B = At for some t evidently forms a group
N, as we see by multiplying together any two relations of this form. By the lemma,
N # 1}. The elements At form a group N' conjugate to N in G. But, since N
and N', as conjugate groups, have the same order, and each is a subgroup of the
cyclic group A, it follows that N' = N, i.e., B-'NB = N.
Thus N is invariant under conjugation by B. As subgroup of {A }, N is ob-

viously invariant under conjugation by A; hence, N is invariant under conjuga-
tion by AxBV for all x,y; i.e., N is invariant in G.

This completes the proof of the theorem of section 2, and therewith the
supersolvabiiity of G.

I This concept was introduced by G. Zappa, "Sui gruppi supersolubili," Rend. Sem. Math.
Univ. Roma (4), 2, 323-330 (1937).

2 Huppert, B., "tUber das Produkt von paarweise vertauschbaren zyklischen Gruppen," Math.
Zeitschr., 58, 243-264 (1953), p. 257.

3 Douglas, J., "On finite groups with two independent generators," these PROCEEDINGS, 37,
604-610, 677-691, 749-760, 808-813 (1951).
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1. Introduction.-In 1936-37, von Neumann proved the following result:
Suppose L is a complemented modular lattice possessing a homogeneous basis
a, ... ., an with n finite and > 4. Then there exists a regular associative ring S
with unit such that L is lattice-isomorphic to L(Sn), where Sn denotes the set of
vectors (a', . . ., an) with all a' in S and L(Sn) denotes the set of finitely generated
submodules of sn, ordered by set inclusion (submodule means left submodule
with S as ring of scalars).I
Von Neumann defines S to be the auxiliary ring of L-numbers (a is in S means:

a = (aij) for a certain family of lattice elements aij, each a relative complement
of aj in aj + aj). Then, by induction on m (m = 1, ... , n), von Neumann shows:

The sublattice [0, a, + . . + am] is isomorphic to L(Sm). (1)

Von Neumann's proof of (1) employs powerful and involved technique. We
now point out that for m = 1, (1) is an immediate consequence of the regularity
of S; for m = 2,3, (1) can be verified by straightforward calculations; and what is
surprising, for m> 3, the validity of (1) can be deduced from its validity for m = 3
by simple lattice calculations.
Our simplification2 of the proof of (1) covers extensions of von Neumann's
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theorem to the case n = 3 supplemented by a Desarguesian3 (or Moufang4 or even
weaker5) condition. With minor changes, it yields at once an extension wider than
that of J6nsson:6 J6nsson assumes that L has a basis a,, . . . , an with each a1 per-
spective to a subelement di of a, and di = a, for i = 2,3,4, (or for i = 2,3 together
with a supplementary condition). With non-Desarguesian hypotheses on L, the
associative law for multiplication and the left distributive law may fail to hold in S.
For the special case that L is an n - 1 dimensional projective geometry and the

a1 are points (then the only idempotents in S are 0,1), this gives a direct and rather
transparent demonstration of the classical coordinatization theorem for projective
geometry.
We sketch below our simplified proof of von Neumann's original theorem (n > 4).

A detailed discussion will be given elsewhere.
2. Notation.-A =- a, + . . . + ai, AO 0 A/ = a, ± ... + aj-1 + aj+1 +
. + ai. An x is called an i-element if x % A' and xAt-' = 0. If v = (a1,...,

an) with ai = 0 for j > i and with a' = idempotent and alaJ = aJ for j < i, then
v is called an i-vector. M(w,... ) denotes the submodule generated by the vectors
w9 .... If a is in S, the reach of a into a>, written (a),r, means (aij + ai)aj for any
i .j
Suppose x is an i-element. We choose an idempotent e =- e(x) with (e)i =

(x + A1-1)ai. Forj < i, we define x' to be (x + Aji-1)(ai + aj) and we choose any
&i in S with (O3)ij ) x>. Then v(x) is defined to be the i-vector (-e3', . . .,-eft-',
e, 0, ... , 0). M(v(x)) is determined uniquely by x although v(x) depends on the
choice of e(x).

If x is an arbitrary element in L, we choose a base-decomposition x = x1 + ...
+ Xn with each xi an i-element and so obtain a submodule M(~x) =M(v(xi), .

v(xn)). This M(x) is determined uniquely by the particular choice of x1, . ..., Xn

but it is not yet clear that it is the same for all base-decompositions of the given x.
3. Statement of fhe Problem.-It is easy to show that every element in L(Sn)

occurs among the M(v(xi), . . ., v(x.)) as x varies over L. The correspondence
x -0 M(x) is therefore a lattice isomorphism of L onto L(Sn) if the following state-
ment holds: whenever x, y have base-decompositions xi + . . . + Xn, y1 +
+ yn respectively, then

x ( y implies M(v(xi), . . . , v(x,)) < M(v(yi), * * * X V(ty)) (2)

M(v(xD), * * * X v(x.)) < M(v(y), . ..., v(yn)) implies x < y. (3)

4. Reduction of the Problem.-In (2) and (3), we need only consider the case:
X = Xm for some m < n and yj = 0 for j > m. Then we may assume that e(xm) =
e(ym) since (i) Xm < Ym implies that v(xm) = e(xm)v(ym) and (ii) ee(ym) = e(idem-
potent) implies that ev(ym) = V(X) for some m-element xm < Ym. Finally, we may
even assume e(xm) = e(y) = 1.

This settles the case m = 1. If m ) 2, it is sufficient to verify (2), (3) when yj #
0 for precisely one j < m and we may even suppose that the exceptional j is m - 1.
Thus we need only show that if

v(xm) = (-aml, . .. -am, m-1, 1, 0, ... 0),

V(Ym) = (-dM,' .X* -# r- 1, . . . 0),
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and V(ymi_) = (m-1,1, ... _rm-1,m-2r ff 0, 0, ... . 0))

then,

Xm < YiM- + ym implies v(xm) = v(ym) + bv(ym_-) for some 6 in S, (4)

and v(x.) = v(ym) + 6v(ymj) for some 6 in S implies xm < Ym-i + Yin. (5)

5. The Case m = 2.-The relation v(x2) = v(y2) + 6v(yl) is equivalent in turn
to each of: (i) ,321-a2,1is in the left ideal of f, (ii) (12.1- at21)ir G (fMr (iii)
((12 1)2,1 + (a2, )2j,)aj , y], (iv) (x2 + y2)aj < yl, and (v) x2 i, y1 + Y2. This
settles the case m = 2.

6. Deduction of (4) from (5).-Assume xm ( Ym-1 + Yin. Then, by an argument
like that of paragraph 5, ,6m3m-1 - amlml = 6f for some 6. If now we assume (5)
holds, we obtain with this 6: v(yi) + av(ymi-) = v(Xm) for some Xm % Yin-i + Yir.
Then,

Xm + Am-2 =-m + Am-2;

SO) Xm = (Ym-i + Ym)(Xm + Am-2) = Xm,

and hence (4) holds.
7. Reduction of (5) to the Case m = 3.-To complete the proof, we ried only

prove (5) for the case m ) 3.
If m > 3 and v(xm) = v(yin) + 6v(ymi_) we choose any j < m - 2 and "project"

into [0, aj + gm-, + am]. Now if (5) is assumed for the special case m = 3 we (an
obtain

Xm < Ajm-2 + Ym-1 + yr, for all j < tm-2;

hence xm, Ynm-1 + Yi,, proving (5). So we need only prove (5) for the case m = 3.
8. Proof of (5) for the Case m = 3.-Suppose V(X3) = v(y3) + 6v(y2). Then, by

an argument like that of paragraph 5: x3 G a, + Y2 + y3. If now we assuime
(5) holds for the special case m = 3, f = 1, we have also

X3 :, (f2tZ2 + Y2) + Y3,

and so, -3 (a, + Y2 + Y3)(f2ia2 + Y2 + y3) = Y2 + i3.
So we need only prove (5) for the case m = 3, f = 1. Now we have

(1 332 -_a32)(,y2j1) = 33,1 - a3,1

(#332 y2'1 + '33,1)3,1 = (<a%,2141+ a3'j) ,1.

If we calculate the right and left sides of the last equality using the ternary
relation7

(BAY + 6)3,1 = (Y2,1 + (63,1 + a2)(163,2 + al))(a3 + a,),

we obtain y, + Y3 and Y2 + X3 respectively. Hence, X3 < Y2 + Y3, verifying (5).
This completes the proof of von Neumann's theorem.

1 See von Neumann, Continuous Geometry (Princeton University Press, 1960), part 2, chapters
1-14, especially Theorem 14.1 on page 208, or Fryer, K. D., and I. Halperin, "On the coordinatiza-
tion theorem of J. von Neumann," Can. Jaurn. of Math., 7, 432-444 (1955), or Amemiya, I., "On
the representation of complemented modular lattices," Journ. Math. Soc. Jap., 9, 263-279 (1957).
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2 For simplifications in the construction of S, see Fryer, K. D., and I. Halperin, "Coordinates in
geometry," Trans. Roy. Soc. Can., 48, Ser. 3, 11-26 (1954).

3Fryer, K. D., and I. Halperin, "The von Neumann coordinatization theorem for complemented
modular lattices," Acta Sci. Szeged, 17, 203-249 (1956).

4 Fryer, K. D., and I. Halperin, "On the construction of coordinates for non-Desarguesian
complemented modular lattices," Proc. Roy. Neth. Acad. (Amsterdam), 61, 142-161 (1958);
Amemiya, I., and I. Halperin, "On the coordinatization of complemented modular lattices,"
Proc. Roy. Neth. Acad. (Amsterdam), 62, 72-78 (1959) and "Complemented modula'r lattices de-
rived from non-associative rings," Acta Sci. Szeged, 20, 181-201 (1959).

6 Baer, R., "Homogeneity of projective planes," Amer. J. Math., 64, 137-152 (1942); Fryer,
K. D., "Coordinates in non-Desarguesian complemented modular lattices," Proceedings of Sym-
posia in Pure Mathematics, volume II; Lattice Thecry (Providence: American Mathematical
Society, 1961), pp. 71-77.

6 Jonsson, Bjarni, "Representations of complemented moduflar lattices," T'rans. Amer. Math.
Soc., 97, 64-94 (1960).

7 See (5.2.2) in ref. 3 above.
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Nearly a decade ago this laboratory began an investigation on the nature of
colicines-antibacterial agents of remarkable potency which are elaborated by
certain Enterobacteriaceae and which kill other microorganisms of the same species.
These agents were first described by Gratia in 19251 who observed that cell-free
filtrates of a virulent strain of colon bacillus with which he was working contained
an agent, "principle V," which killed a sensitive host strain "coli 4." Gratia
observed that his principle was thermostable and that it diffused through cellophane
membranes. He pointed out that the agent bore a remarkable similarity to bac-
teriophage, yet differed in that it would not reduplicate upon serial passage.
A resurgence of interest in the colicines took place in the mid-forties, largely

through the work of Fr6dericq,2 to whom most of our modern knowledge concerning
the distribution, specificity, and tenuous relationship of the colicines to the bacterio-
phages can be attributed.3 Extensive as our knowledge is in this regard, our under-
standing of their chemical nature has remained singularly enigmatic despite the
efforts of a number of investigators.4

Several years ago we in this laboratory described the isolation of one of the coli-
cines-colicine K.5 This substance proved to be a lipocarbohydrate-protein
complex, identical with the somatic 0 antigen of the microorganism from which it
was derived. The material had exceedingly potent antibacterial properties. It
was antigenic in rabbits and the antisera specifically precipitated the colicine and
neutralized its antibacterial properties as well.6 Although the colicines and bac-
teriophages show striking resemblances, 2 we were unable to demonstrate any
serological relationship between our colicine K and the coli-dysentery phage T6,
the virus to which this colicine is presumed to be related.
We have now isolated another and different colicine-colicine V. We chose to


